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Observed atmospheric and oceanic internal wave spectra, when analysed in an
Eulerian frame of reference, exhibit a large-wavenumber ‘tail’. In one-dimensional
vertical-wavenumber (k3) spectra, it is typically proportional to |k3|−3.

In 1989, K. R. Allen and R. I. Joseph showed that a large-wavenumber tail was to
be anticipated as a consequence of Eulerian nonlinearity, and they derived relations
for the coefficients of both horizontal and vertical spectra of the form |k|−3. The
coefficients were obtained only for the wave-induced vertical-displacement spectra,
and only for an input spectrum having a certain ‘canonical’ frequency variation
derived on other grounds.

The present work builds on that of Allen & Joseph. It is more general in some
respects, more limited in others. It provides a more transparent form of analysis,
it treats a broad class of wave variables, and it does so for input (Lagrangian)
spectra that can be chosen by the user, free from any constraint to canonical or
other restricted forms. It provides relations whereby the full Eulerian spectrum may
be determined numerically, once the input spectrum has been chosen, and it provides
analytic forms applicable at large wavenumbers for horizontally isotropic spectra.
The derived one-dimensional vertical-wavenumber spectra are discussed in relation
to observations.

Certain shortcomings in the development, both as given by Allen & Joseph and as
found here, are identified and discussed.

1. Introduction
Observations in the middle atmosphere and in the oceans reveal fluctuations

thought to be induced by internal gravity waves. Portions of their Eulerian spectra
often reproduce themselves with little change from one occasion to another, as was
recognized first by Garrett & Munk (1972, 1975) for the oceans and then by VanZandt
(1982) for the atmosphere. Perhaps the most notorious example of this behaviour is
given by the vertical-wavenumber (k3) spectrum of small-scale horizontal winds in
the middle atmosphere. Its form is typically close to |k3|−3, with a coefficient that,
after division by the stability N2, varies but little regardless not only of circumstances
but even of height (e.g. Dewan et al. 1984; Tsuda et al. 1989) despite the growth
with height that might be expected to result from the diminution of gas density.
The corresponding oceanic multiple of stability is virtually the same, which fact is
suggestive of a common mechanism of control. There are many who believe that
such spectra, whether in the atmosphere or in the ocean, represent the effects of the
Eulerian advective nonlinearity acting on the wave system.
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As was pointed out by Allen & Joseph (1989; hereinafter AJ89), no such nonlin-
earity arises in a Lagrangian formulation of the problem. The process was therefore
amenable to examination by use of a quasi-linearized Lagrangian formulation accom-
panied by a transition from the Lagrangian to the Eulerian spectral description.

AJ89 provided a method of achieving the transition. They applied it to the spectra
of vertical displacements induced by a certain ‘canonical’ spectrum that was thought
to be appropriate to oceanic internal waves. Chunchuzov (1996) adapted and extended
the method for vertical displacements in the atmosphere. Both analyses employed the
slightly arcane correlation techniques of spectral analysis, and the generality of the
conclusions was restricted by the form assumed for the input Lagrangian spectrum.

A new form of adaptation is presented here. It is conducted in what will be, to
many, a far more transparent manner. It permits evaluation for a wide variety of
Lagrangian spectra and of wave parameters, and it thereby reveals both the degree
of generality of the conclusions and their variability from one spectrum or observed
fluctuation to another.

The paper is organized as follows. In § 2, we specify the form of the ensemble of
Lagrangian waves that is assumed. It requires, in part, that the Lagrangian waves be
legitimately linearized (the conditions for which are outlined in Appendix A). In § 3, we
transform the associated waveform from Lagrangian into Eulerian coordinates. In § 4,
we obtain formally the Fourier transform of the Eulerian waveform and indicate the
origins of the large-wavenumber tail that it implies. In § 5, we convert this formally into
a four-dimensional power spectral density, given by (5.2), whose evaluation requires
the determination of a particular space–time average to produce a correlation function.
In §§ 6 and 7, the averaging is conducted in a transparent fashion for the assumed case
of a large number of uncorrelated waves. The correlation functions that then result
are given in § 8, requiring only insertion in (5.2) and numerical integration in order
to produce the Eulerian spectra that correspond to the input Lagrangian ensemble.

Subsequent sections are concerned only with the spectra at large Eulerian wave
vectors k, to be identified as the Eulerian spectral tail. Section 9 obtains the general
form of the functions required for the production of the lead term of an asymptotic
expansion of the four-dimensional spectrum, in the fashion of AJ89 (but altered
from AJ89 as in Appendices B and C). It is amplified by Appendix D, where
detailed expressions are given for integrands required for the lead term of the three-
dimensional wavenumber spectrum for each of displacement and velocity. The method
of integration of these lead terms to produce spectral densities, as required in (5.2), is
indicated in § 10, with explicit expressions for the integrals being given in the related
Appendix E. Numerical integration is required to convert these into one-dimensional
spectra, but § 11 provides a crude analytic assessment of the vertical-wavenumber
spectra of displacement and velocity (with the aid of Appendix F).

The important results and observational implications of the analysis, including
universal |k3|−3 spectra, are discussed in § 12.

Throughout the development, repeated comparison is made with AJ89. This serves
to underline both the debt owed to that work and the points of contrast to it. The
latter are significant not only in their own right but also for assessment of the validity
of the new results where these differ seriously, as in places they do, from those of AJ89.

2. The Lagrangian input spectra
We begin with the assumption of an input spectrum consisting of a multitude

of gravity waves, each having such small amplitude that a quasi-linear Lagrangian
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description of the total oscillation applies (see Appendix A). At an early stage,
we assume incompressibility as a simplification, but we outline the consequences of
compressibility in Appendix G. For simplicity of discussion only, we ignore Coriolis
effects; they could be included (see Appendix G). We also ignore dissipation, though
this is a more fundamental omission that requires some discussion (given in outline
in § 12). The standard growth of amplitude with height that occurs in the atmospheric
case is also ignored in the mathematical development, with justification (insofar as
local application is concerned) at large vertical wavenumbers. Finally, we ignore
steady background flow, because of the complications it imposes on a Lagrangian
analysis if it is shearing, and its irrelevance if it is not.

The Lagrangian coordinate r of a fluid parcel is taken to be the Eulerian coordinate
x of the parcel in the absence of waves. The parcel retains that Lagrangian coordinate
for all time, t, no matter what wave-induced Eulerian displacement s it may experience.

The input wave system is defined in terms of the Lagrangian wavenumber
components αmj(j = 1, 2, 3; 3 is upward) appropriate to each mode m, each be-
ing separately identifiable in the Lagrangian-linear approximation. We represent the
parcel’s displacement sm induced by mode m as Smc{m}, where Sm is a real vector
and c{m} ≡ cos[αmjrj − βmt − φm]. (Summation over a repeated j is implied, here
and throughout. All three components of Sm share a common phase, as is implied,
under present approximations.) The frequency βm is defined to be positive, being
given under present approximations by βm = Nαmh/|αm3|, where N is the buoyancy
frequency and αmh is the magnitude of the horizontal component αmh of αm. Vertical
wavenumbers αm3 are accordingly negative for upgoing waves, positive for downgoing
waves. The opposite prescription is made for the amplitude factor of the vertical
component of displacement, Sm3: it is positive for upgoing waves and negative for
downgoing waves. Absence of Coriolis effects then ensures that the horizontal dis-
placement amplitude vector Smh will be in the direction of αmh, and incompressibility
ensures that Smhαmh + Sm3αm3 = 0. These or alternative conventions must be adhered
to consistently.

The input spectrum consists of some number N̂ of modes specified by Sm3 = Sm3[αm],
with m = 1, 2, . . . N̂; αm is restricted to a fixed finite region of wavenumber space. We
anticipate transiting to a continuous spectrum, one in which the number of modes
N̂ has tended to infinity. In the course of the transition, we require each Sm to be
proportional to N̂−1/2 in order to maintain the finiteness of energy density and the
integrity of Lagrangian linearity.

We wish to evaluate the Eulerian spectrum of some scalar field variable L that,
in the Lagrangian frame, can be related to the vertical displacement on a mode-by-
mode basis by use of the Sm3c{m} of that mode and the polarization relations. The
contribution from the m mode is given by Lmc{m} or, as may be the case, by Lms{m}
where s{m} is the sine equivalent of c{m}; or in general by a combination of the
two (with the sign of Lm being defined by the polarization relation). These two cases
behave somewhat differently as we progress, so the distinction must always be kept
in mind.

The analysis is limited to variables L that take the same value in both coordinate
systems and that relate to a single parcel of fluid at a time. Displacement and velocity
of a parcel are such quantities, whereas velocity shear is not; it would be obtained by
differentiating velocity after the transformation of coordinates.

Our objective is to determine the Eulerian power spectral density of L corresponding
to any given Lagrangian amplitude spectrum Sm3 = Sm3[αm] that maintains quasi-
linearity in the Lagrangian frame, for large N̂.



292 C. O. Hines

3. Lagrangian → Eulerian transition
As previously noted, the Lagrangian coordinate r of a fluid parcel is taken to be

the Eulerian coordinate x of the parcel in the absence of waves. In the presence of the
waves, the parcel experiences vector displacement s[r, t] =

∑
sm[r, t], where the sum

extends over all m. Accordingly, the parcel lying at some chosen x at some chosen
time t is the parcel whose r is given implicitly by

x = r + s[r, t]. (3.1)

The required parameter L associated with the parcel has the same value in the two
coordinate systems, though for convenient identification we name it E in the Eulerian
system: E[x, t] = L[r, t], where x and r are related by (3.1). This fact can be expressed
formally with the aid of a three-dimensional delta function:

E[x, t] =

∫
d3rL[r, t] J[s] δ[x− r − s], (3.2)

in which J[s] is the Jacobian of the coordinate transformation (AJ89). We take
J = 1 here, in keeping with the assumed incompressibility, but we note the potential
relevance of J 6= 1 and revisit it in Appendix G. Integrations extend from −infinity
to +infinity here and elsewhere unless otherwise indicated.

The mapping expressed by (3.2) is in general intractable. Its potential for spectral
studies was, however, recognized and exploited by AJ89, where the delta function
proper was replaced by a Fourier transform as

δ[x− r − s] = (2π)−3

∫
d3K eiK ·(x−r−s), (3.3)

to produce

E[x, t] = (2π)−3

∫
d3r d3K L[r, t] eiK ·(x−r−s), (3.4)

though AJ89 retained J 6= 1 and included Coriolis effects ignored here. Our path now
parts from, but parallels, that of AJ89.

4. The Eulerian tail
The four-dimensional Fourier transform of E may be found as

Ê[k, ω] = (2π)−3

∫∫
d3x dt d3r d3K e−i(k·x−ωt)L[r, t] eiK ·(x−r−s). (4.1)

Integration over x introduces a delta function in (k − K ), and integration over K
inserts a k where K was previously found. The net result is

Ê[k, ω] =

∫
d3r dt e−i(k·r−ωt)L[r, t] e−i(k·s). (4.2)

This form warrants examination before we proceed.
If (4.2) lacked its final exponential factor, it would provide identically the La-

grangian Fourier transform. If k · s is sufficiently small, then, the Eulerian transform
must differ negligibly from the Lagrangian; the two will have virtually identical
power spectra. However, the ‘sufficiently small’ criterion can be breached either by
considering sufficiently large wave amplitudes at fixed k, or by considering sufficiently
large k even with small wave amplitudes. In the latter case, even for the smallest
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Lagrangian wave amplitudes that we wish to consider, the Eulerian spectrum must
have a large-wavenumber ‘tail’ that we can find (formally) merely by looking for it. Its
existence does not depend on the occurrence of large Lagrangian wave amplitudes,
and the two types of spectra are intrinsically different in nature.

With respect to the vertical-wavenumber spectra, the transition must set in at |k3|
no greater than the inverse of the r.m.s. vertical displacement 〈s3〉. For gravity waves,
this inverse is approximately N divided by the r.m.s. horizontal perturbation velocity.
Equivalently, then, the transition occurs at horizontal phase speeds (ω/kh ' |N/k3|)
comparable to the r.m.s. horizontal perturbation velocity, as is expected also from
the form of the advective nonlinearity of the Eulerian equations. From this transition
point on, if not before, the Eulerian spectrum contains components not duplicated
in the Lagrangian spectrum – components that are spread (in wavenumber–frequency
space) from the individual modes of the Lagrangian spectrum.

It should be noted expressly that the occurrence of the large-wavenumber Eulerian
tail has nothing whatever to do with any physical process; it is purely a kinematic
consequence of what might be termed looking at the waves in the wrong coordinate
system. If one insists on defining ‘waves’ according to their Eulerian linear description,
then one is forced to admit to the existence of ‘nonlinear wave–wave interactions’
in order to produce the tail, but these are mere mathematical artefacts and have
no physical import. The pseudowaves that clutter the tail are not waves at all; they
do not obey dispersion or polarization relations appropriate to true waves, nor do
they propagate freely. They simply mark deformations imposed on waves by other
waves, locally enhancing their shears, as has been illustrated by Eckermann (1999).
This is true even though the underlying waves may still be identified as such in the
Lagrangian description, complete with their dispersion and polarization relations, as
was established by AJ89.

It may be noted in passing that there is no similarly generated Eulerian frequency
tail, because the Lagrangian → Eulerian transformation involves a spatial mapping
only. Nevertheless, Eulerian frequencies must be distinguished from input Lagrangian
frequencies in the tail regime, they being something of an artifical construct as well.
They may, for example, include frequencies exceeding N (AJ89). Within an Eulerian
framework, they may be viewed heuristically as having been produced by a Doppler
spreading caused by the velocity fluctuations induced by the wave system itself (Hines
1991b).

5. The four-dimensional Eulerian power spectral density (PSD)

Resuming our formal development, we next obtain the complex conjugate of Ê,
namely

Ê∗[k, ω] =

∫
d3r′ dt′ ei(k·r′−ωt′)L′[r′, t′] ei(k·s′), (5.1)

in an obvious notation, employing a distinct set of Lagrangian coordinates (r′, t′) for
the purpose. We form the product of (4.2) with (5.1), change r′ and t′ into r + R
and t + T , and conduct the integrations over r′ and t′ via the new variables R and
T assuming statistical stationarity. As defined for an arbitrarily large volume of
space–time V4, the Eulerian power spectral density (with radian units, which are to
be employed here) corresponding to L is then given by [2π]−4V−1

4 times the result:

PSD[E] = [2π]−4V−1
4 ÊÊ∗ = [2π]−4

∫
d3R dT ei(k·R−ωT )A, (5.2)
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where

A ≡ A[R, T ] ≡ V−1
4

∫
V4

d3r dt LL′ eik·(s′−s), (5.3)

with L′ ≡ L[r+R, t+T ] and likewise s′. This A, which gives the space–time average of
LL′ exp[ik · (s′ − s)] for any chosen R, T , is equivalent to the ‘expectation value’ of the
same quantity for the same R, T , defined by AJ89 as an integral over a displacement-
momentum phase space (presumably under an assumption of ergodicity). We will
evaluate it, instead, by contemplating averages over the phases of all c{m} and s{m} –
a much more transparent process. For the purpose, we will need also displacements
of phase δm ≡ αmjRj − βmT and then corresponding cosine and sine factors, c{δm}
and s{δm}, with which to express L′ and s′ as modified forms of L and s.

If it were not for the exponential factor in (5.3), the averaging process would
be straightforward. L and L′ would be expressed as sums over all modes, then
multiplied together. Upon averaging, product terms of the type LmL

′
n would vanish

for m 6= n because of mutual phase incoherence. Terms of the type LmL
′
m would

produce c{m} and (c{m}c{δm} − s{m}s{δm}) factors for in-phase variables, s{m} and
(s{m}c{δm} + c{m}s{δm}) factors for phase-quadrature variables. Averaging would
then eliminate cross-products of the form c{m}s{m} and yield terms of the form
1
2
L2
mc{δm} both for in-phase and for phase-quadrature variables. The sum over

m of all such averages, if inserted in (5.2) and integrated there, would give the
Lagrangian power spectral density of L corresponding to the chosen set of Sm3 =
Sm3[αm]. (Note that, whereas the input spectrum was defined to contain only positive
frequencies for later convenience, this output spectrum contains both positive and
negative frequencies as did that of AJ89. It also contains both positive and negative
wavenumbers, even if all Lagrangian waves are either upgoing or downgoing.)

For the Eulerian power spectrum, the exponential in (5.3) cannot be ignored except
at small |kj | – typically, at |kj | small in comparison with the inverse of the j component
of the corresponding r.m.s. displacement 〈sj〉, for all j (= 1, 2 and 3). At such kj , it
would reproduce the Lagrangian spectrum. However, if any |kj | exceeds this limit,
as it will in the Eulerian tail, the exponential factor in (5.3) must be taken into
account. Correlations will occur between space–time variations in LL′ and those in
the exponential factor, and they include correlations even between modes with m 6= n.
Our immediate task is to determine these correlations.

6. Evaluation of the correlations
The nature of the correlation varies as between Lm being in phase or in phase

quadrature with respect to Sm3. We examine first the in-phase type of L and concentrate
for the moment on two specific wave modes, designated m in the L sum and n in the
L′ sum, respectively.

If m = n, there is only a single factor in exp[ik · (s′ − s)] with which a correlation
can be found, namely exp[ik · (s′m − sm)]. We extract this factor from the exponential
for separate treatment, expanding it in a Taylor series as 1 + ik · (s′m − sm) + · · · =
1+i(k ·Sm)(c{m}[c{δm}−1]− s{m}s{δm})+ · · · . (With a multitude of waves and finite
energy, |Sm| is small and the expansion is justified not only for small but even for
large k; although k · s may not be small, each individual k ·Sm will be, the more so as
the number of modes N̂ tends to infinity.) The product term L2

mc
2{m}c{δm} combines

with the first term of the expansion to produce 1
2
L2
mc{δm} on average, just as before.
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Upon summation, it yields

M ≡∑[L2
mc{δm}]/2 (6.1)

just as before, but now the remainder of the original exp[ik · (s′ − s)] factor is left over
for subsequent incorporation. The remainder of the present expansion is likewise left
over, but it tends to 0 as N̂ tends to infinity and will not be discussed further.

When m 6= n, two exponential factors must be extracted for this separate treat-
ment, those in m and n. Upon expansion, together they yield 1 + i[k · (s′m − sm +
s′n − sn)] − 1

2
[. .]2 + . . . , where [. .] stands for the preceding bracketed expression. The

multiplier LL′ contributes a term with coefficient LmLnc{m}(c{n}c{δn} − s{n}s{δn})
for correlation with this expansion. The first two terms of the expansion, expressed
as 1 plus a sum of multiples of c{m} and its partners, yield zero correlation since
all products contain at least one of c{m}, s{m}, c{n} and s{n} to an odd power. The
same is true of the self-product terms of [. .]2 – those containing (k · Sm)2 and (k · Sn)2

as multipliers – but not of the cross-product term 2(k · Sm)(k · Sn)(c{m}[c{δm} − 1]−
s{m}s{δm})(c{n}[c{δn} − 1] − s{n}s{δn}). In conjunction with the trigonometric fac-
tors of LL′, it produces terms such as c2{m}[c{δm} − 1]c2{n}c{δn}[c{δn} − 1], whose
average value is 1

4
[c{δm} − 1]c{δn}[c{δn} − 1], and so on. All such averages must be

combined.
There is a mode m member of L′ as well, of course, and it contributes similarly

in combination with mode n in L. After allowing for that, we may keep m fixed
and add over all n to find the net contribution of mode m to LL′ as correlated with
the exponential factor. Then we may add over all m to find the total of all such
contributions, though each pair will then have been counted twice and the sum must
be divided by 2. The net result is

P ≡
[∑

Lm(k · Sm)(1− c{δm})/2
]2

. (6.2)

As given, P contains self-products of modes (m = n). These should in principle be
subtracted, since self-products behave differently and have already been accounted
for; but as N̂ tends to infinity, their contribution to P tends to 0, so the subtraction
process is ignored. Higher-order terms in the expansions of the exponentials could
be retained, but their sum too tends to 0 as N̂ tends to infinity, so they too are
ignored.

The result of these processes is to yield (M + P ) as the correlated factor that
emerges from (5.3). Of course, each of the product terms should have been multiplied
by the contributions to exp[ik · (s′ − s)] of the remaining modes at each point of
space–time in turn. However, since there is no correlation between those modes and
the m and n modes, their averaging process can be conducted separately. That will
be done shortly, after we deal with the correlations associated with phase-quadrature
variables.

For them, the steps that led to M for in-phase variables may be repeated and M is
again found, now via an averaging of s2{m} rather than c2{m}. But the steps that led
to P now yield, in place of it,

−Q ≡ −
[∑

Lm(k · Sm)s{δm}/2
]2

. (6.3)

(The negative sign should be noted.) This parameter, like P , is valid at all k as N̂
tends to infinity. It joins with M to produce (M − Q) for subsequent union with the
remainder of the exp[ik · (s′ − s)] factor. We turn next to the averaging of that factor.
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7. Averaging of exp[ik · (s′ − s)]
As noted, each of the contributing m,m and m, n terms should have been multiplied

by the product of the exp[ik·(s′q−sq)] factors of all non-correlating modes q (6= m, 6= n)
in the course of averaging over space–time. However, also as noted, that product may
be separately averaged because there is no correlation to be taken into account.
(We ignore here putative resonant interactions. They find no place in a linearized
Lagrangian formulation, however much they may appear to exist when the Eulerian
variations are attributed to wave–wave interactions. Their role might, perhaps, be a
matter for future study.) We may include even the exponential factors of the m and n
modes in the averaging process, since they make a negligible contribution to the mean,
and so we seek the mean of the entire exponential factor exp[ik · (s′ − s)] ≡ exp[ig],
say.

The parameter g is the sum of a multitude of independent sinusoids lacking phase
coherence with one another. The probability of its having a value within some range
dg about some chosen value g is therefore given, by the central limit theorem, as

p[g] dg = (2πG)−1/2 exp[−g2/2G] dg, (7.1)

where G is the mean-square value (the variance) of g. The latter can be determined
by expanding g as the sum of individual modes once again, squaring, eliminating
cross-product terms via phase incoherence, and averaging cos2 and sin2 factors of the
self-product terms as 1

2
. This process yields, after division by 2 for later convenience,

G/2 =
∑

(k · Sm)2(1− c{δm})/2. (7.2)

The mean value of the exponential factor in (5.3), taken by itself, is then found to be∫
dg(2πG)−1/2 exp[−g2/2G] exp[ig] = exp[−G/2]. (7.3)

Here as later, use has been made of a more general integral cited by AJ89:∫
dw wn exp[−a2w2 + ibw] = inπ1/22−na−(n+1) exp[−b2/4a2]Hn[b/2a], (7.4)

where a is the positive root of a2 and Hn[z] is a Hermite polynomial given by
(−1)n exp[z2] dn(exp[−z2])/dzn. (H0 = 1, H1 = 2z, H2 = 4z2 − 2, etc.) The factor
exp[−G/2], though obtained here in a different way, corresponds exactly to the
exponential factor in (3.12) of AJ89.

8. The four-dimensional Eulerian spectrum
The final result for in-phase L is, then,

A = AP ≡ (M + P ) exp[−G/2], (8.1)

whereas that for phase-quadrature L is

A = AQ ≡ (M − Q) exp[−G/2]. (8.2)

These forms differ from the corresponding Lagrangian relations by having non-zero
P ,Q and G. They are designed for insertion into (5.2) and for subsequent integration
over R and T there, weighted according to the requirements of (5.2). This process,
when completed, yields the Eulerian spectrum corresponding to the input Lagrangian
spectrum, for the assumed case J = 1 and N̂ → infinity.
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Unfortunately, the integrations required in (5.2) cannot be completed in closed
form. In general, the Eulerian spectral results can become available only via numerical
methods. However, by inspection we can confirm that at small wavenumbers, such
as to make P , Q and G negligibly small, the Eulerian spectrum will differ negligibly
from the Lagrangian.

Our interest now turns to the opposite extreme of large wavenumbers k(≡ |k|), such
that at least one component of k, multiplied by the corresponding r.m.s. component
of displacement, yields a result > 1.

9. Expansions for integration over Rj and T
As was established by AJ89, it is possible to carry the analytic process further

if attention is confined to the asymptotic behaviour at sufficiently large k. We now
proceed along that path, but with use of the present (8.1) and (8.2) rather than the
corresponding form k−2

1 M33 found in (3.11) of AJ89. They are not the same, even for
the vertical displacement treated in AJ89, and the distinction becomes important at
large wavenumbers. AJ89 is believed to be incomplete on this point, for reasons given
in Appendix B concerning certain endpoint contributions.

With attention confined to large wavenumbers, AJ89 argued that the exp[−G/2]
factor acts as a sort of cutoff factor: as k is made progressively larger, it progressively
restricts the range of values of |Rj | and |T | from which significant contributions to
the integrals in (5.2) may be made. This restriction permitted an expansion of various
functions in Taylor series over the restricted range. The lead terms in G itself were
quadratic in Rj and T , and these terms alone were retained there. They provided
exp[−G/2] factors having the form exp[−k2w2], identical to the form exp[−a2w2]
on the left-hand side in (7.4). The exact integrals given in (7.4), when employed
for the evaluation of (5.2), then led to expansion of the asymptotic spectrum in
terms proportional to k−q , with q = 5, 7, . . . in three-dimensional spectra. After
integration to produce one-dimensional spectra, the sequence became q = 3, 5, . . . .
In both cases, only the coefficient of the lowest-order term was derived, it being
the only relevant term in the asymptotic limit of large wavenumber. Here, the q
sequence derives from the n sequence of (7.4), with n = 2, 4, . . . as found in the
expansion of coefficients that correspond to the present M + P . The use of the
approximate G to produce exact integrals in this fashion will be termed the AJ89
protocol.

With the more complete relations obtained here, implementation of the AJ89
protocol would lead to q = 3, 5, . . . in three-dimensional spectra, q = 1, 3, . . . in
one-dimensional spectra, the new lead terms being associated with the constant
(i.e. n = 0) component of M in (6.1), namely

∑
L2
m/2. The lead term in each

sequence is both mathematically and physically unacceptable, since it implies
(after integration over wavenumber) infinite Eulerian variances in association with
finite Lagrangian variances. As is shown in Appendix C, implementation of the
AJ89 protocol in application to the case n = 0 introduces an error proportional
to |k|−3 in three-dimensional spectra, |k|−1 in one-dimensional spectra. When this
error is removed, as it can be unambiguously for in-phase variables, it yields the
expected sequences q = 5, 7, . . . in three-dimensional spectra and 3, 5, . . . in one-
dimensional spectra. We therefore simply ignore the erroneous lead term that the
AJ89 protocol produces in the analysis here, and present only the next term.
(The revision is less readily justified in the case of phase-quadrature variables
if the input spectrum lacks vertical symmetry, but must be equally valid; see



298 C. O. Hines

Appendix C.) In this way we come into agreement with AJ89 as to the form of
the lead term, but the coefficient will differ because of the endpoint portion over-
looked by AJ89.

With the AJ89 protocol now known to produce error when applied to the case
n = 0, some suspicion of error in the coefficients of the higher-order terms may arise.
We nevertheless proceed with the analysis assuming the validity of those coefficients
in the retained lead term, and recognizing the risk. The ultimate test of the utility
of the resultant analytic relations lies in the insights to which they lead and in the
degree to which observations may be interpreted with their aid. Section 12 provides
a preliminary test, and the test appears to be passed.

All Rj and T are now restricted to small values. The c{δm} term in M, P and
G/2 may be approximated as 1 − (δm)2/2 = 1 − (αmjRj − βmT )2/2, while s{δm} in
Q becomes (αmjRj − βmT )− (αmjRj − βmT )3/6. Higher-order terms could be retained,
but they lead only to terms of higher order than the lead terms in the asymptotic
expansion, and so are of minimal importance here.

The expansions required for M, P and Q depend on the wanted variable L and
must be determined for each L in turn. They are inconvenient functions, but they
simplify somewhat with the adoption of horizontally isotropic input spectra and of
T = 0, simplifications that will be introduced shortly. For horizontal displacement sh,
vertical displacement s3, horizontal velocity vh and vertical velocity v3, the retained
lead coefficients are then as given in Appendix D by (D 1)–(D 4).

The expansion required for G/2, in contrast, is common to all L and so is given here.
It initially contains four self-product terms, such as R2

1

∑
[(k1Sm1+k2Sm2+k3Sm3)

2α2
m1]/4,

and six cross-product terms such as R1R2

∑
[(k1Sm1 + k2Sm2 + k3Sm3)

2αm1αm2]/2. The
required sums over m will in general be different from one another, resulting in ten
separate parameters that represent the Lagrangian spectrum. These can be reduced
to a slightly more workable number by the assumption of horizontal isotropy, which
we now impose. Sm1 then becomes Smh cosψm, Sm2 becomes Smh sinψm, and likewise
with αm1 and αm2, where ψm is the azimuth of propagation of the m mode (measured
from the 1-axis). The results are then averaged over all ψm for a given αmh, keeping
Smh constant. The spectrum is thereby characterized (for immediate purposes) by
just seven sums, given by I1 to I7 in table 1. These sums, and others to follow, will
hereinafter be termed ‘spectral sums’.

Under present approximations, I1 is the Lagrangian variance of vertical shear of
horizontal velocity, normalized by N2. It is therefore the inverse of a Richardson
number RiL as obtained in Lagrangian coordinates. We may expect RiL to exceed
1, perhaps considerably. This is in fact a required condition for the linearity of the
Lagrangian wave system (see Appendix A). In practice, I2 � I1 � I3. Although
defined as the Lagrangian variance of the horizontal velocity, I4 under present
approximations is equally N2 times the variance I16 of the vertical displacement.
All of I1 to I5 are inherently positive. Both I6 and I7 vanish if the input spectra
are symmetric with respect to upgoing and downgoing waves (as in AJ89), but
if all waves are upgoing only or downgoing only they will take the sign of the
corresponding α3.

In all of the spectral sums, we may imagine the summation operation
∑

being
replaced by integration over αh (> 0) and α3 after deleting the m subscripts and mul-
tiplying by 2παh dαh dα3. In this process, the various expressions subject to summation
become spectral densities in α space.

Given these characterizing parameters, G/2 may be evaluated for horizontally
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I1 ≡ 1
2

∑
S2
h α

2
h = 1

2

∑
S2

3 α
2
3

= 1
2
N2
∑

S2
h α

2
3β

2 ≡ [RiL]−1

I2 ≡ 1
2

∑
S2

3 α
2
h

I3 ≡ 1
2

∑
S2
h α

2
3 = 1

2

∑
S2

3 α
−2
h α

4
3

I4 ≡ 1
2

∑
S2
h β

2 = 1
2
N2
∑

S2
3 = N2I16

I5 ≡ 1
2

∑
S2

3β
2 = 1

2
N2
∑

S2
3 α

2
hα
−2
3

I6 ≡ 1
2

∑
S2
h α3β = 1

2
N
∑

S2
3 α
−1
h α

2
3 sgn[α3]

I7 ≡ 1
2

∑
S2

3 α3β = 1
2
N
∑

S2
3 αh sgn[α3]

I8 ≡ 1
2

∑
S2

3 α
4
h

I9 ≡ 1
2

∑
S2

3 α
2
hα

2
3

I10 ≡ 1
2

∑
S2

3 α
4
3

I11 ≡ 1
2

∑
S2
h α

4
3 = 1

2

∑
S2

3 α
−2
h α

6
3

I12 ≡ 1
2

∑
S2

3 α
2
hα3β = 1

2
N
∑

S2
3 α

3
h sgn[α3]

I13 ≡ 1
2

∑
S2

3 α
3
3β = 1

2
N
∑

S2
3 αhα

2
3 sgn[α3]

I14 ≡ 1
2

∑
S2
h α

3
3β = 1

2
N
∑

S2
3 α
−1
h α

4
3 sgn[α3]

I15 ≡ 1
2

∑
S2

3 α
2
hβ

2 = 1
2
N2
∑

S2
3 α

4
hα
−2
3

I16 ≡ 1
2

∑
S2

3

I17 ≡ 1
2

∑
S2
h = 1

2

∑
S2

3 α
−2
h α

2
3

Table 1. Spectral sums required for the analysis. The summation is over all modes m as described in
the text. The mode subscript m has been omitted from all mode-dependent quantities (Sh, S3, αh, α3

and β) for simplicity. The alternative forms result from the standard approximations adopted in the
text. Forms dependent only on S3, αh and α3 are most useful for application when the spectrum is
specified by S3 = S3[αh, α3]. Sgn[α3] is the sign of α3; spectral sums containing it vanish in the case
of symmetric upgoing and downgoing spectra.

isotropic spectra as approximating Ĝ/2, where

8Ĝ ≡ R2
1(3k2

1I1 + k2
2I1 + 4k2

3I2) + R2
2(k2

1I1 + 3k2
2I1 + 4k2

3I2)

+R2
3(4k2

1I3 + 4k2
2I3 + 8k2

3I1) + T 2(4k2
1I4 + 4k2

2I4 + 8k2
3I5)

+4R1R2k1k2I1 − 16R1R3k1k3I1 − 16R2R3k2k3I1 − 16R1Tk1k3I7

−16R2Tk2k3I7 + R3T (8k2
1I6 + 8k2

2I6 + 16k2
3I7). (9.1)

This set may be further simplified by setting R1 = w1 cosφ−w2 sinφ, R2 = w1 sinφ+
w2 cosφ, k1 = kh cosφ and k2 = kh sinφ, where φ is the azimuth of the k currently of
interest (AJ89). It is then found that

Ĝ/2 = ε2w2
1 + ζ2w2

2 + η2R2
3 + θ2T 2 − κw1R3 − λw1T + µR3T , (9.2)

where

ε2 ≡ (3k2
hI1 + 4k2

3I2)/16, ζ2 ≡ (k2
hI1 + 4k2

3I2)/16,

η2 ≡ (k2
hI3 + 2k2

3I1)/4, θ2 ≡ (k2
hI4 + 2k2

3I5)/4,

κ ≡ khk3I1, λ ≡ khk3I7, µ ≡ k2
hI6/2 + k2

3I7.
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Simultaneously, the exponent in (5.2) reduces to i(khw1 +k3R3−ωT ). With no w2 term
in this exponent, and no cross-product term involving w2 in (9.2), these expressions
are simpler to employ. They have the further advantage of being in a form convenient
for subsequent integration over kh, rather than separately over k1 and k2.

Given this approximation for G/2, which is equivalent to that adopted by AJ89,
and those already indicated for M, P and Q (rewritten in terms of w1 and w2 rather
than R1 and R2), it can be seen that the integrations required in (5.2) are almost all
of the form given by (7.4), with w there taken to be w1, w2, R3 and T in turn. They
are not all quite of that form because of cross-product terms in (9.2) involving w1R3,
w1T and R3T , but (7.4) can be generalized by setting w = v − c/2a2 to yield∫

dw wn exp[−a2w2+ibw−cw]=exp[c2/4a2−ibc/2a2]

∫
dv (v−c/2a2)n exp[−a2v2+ibv],

(9.3)
and then all the required integrals are available in closed form. (The equivalent step
was taken in AJ89 by a further change of coordinate.)

The approximation (9.1) is inadequate to the purpose of obtaining an expansion
that will yield correctly all terms of order k−3 in one-dimensional spectra, now that
(in effect) the endpoint terms omitted from AJ89 are retained in (M+P ) and (M−Q).
Instead, terms of order (δm)4 must be retained in (7.2) for that purpose. This poses
something of a problem, since the closed-form integrals given by (7.4) and (9.3) rely
on there being only terms up to second order in (δm) in the integrand exponent.

To circumvent this problem, we first expand (7.2) as

G/2 =
∑

(k · Sm)2[(δm)2/2− (δm)4/24 + . . .]/2

= Ĝ/2−∑(k · Sm)2[(δm)4/48 + . . .]. (9.4)

We next insert this form into the exponentials wanted in (8.1) and (8.2), and finally
expand the second exponential factor:

exp[−G/2] = exp[−Ĝ/2] exp
[∑

(k · Sm)2(δm)4/48 + . . .
]

= exp[−Ĝ/2]
[
1 +

∑
(k · Sm)2(δm)4/48 + . . .

]
. (9.5)

This leaves the exponential proper in the form required for a closed-form integral,
while introducing yet another factor ‘on line’ multiplying (M + P ) and (M − Q).
For purposes of the lowest-order retained asymptotic term, inspection reveals that
the expansion may be truncated at the term shown explicitly in (9.5), to yield the
correcting factor (1 + F) with

F ≡∑(k · Sm)2(δm)4/48. (9.6)

It turns out that this can be a significant contributor to the spectrum.
With the use of this factor, (8.1) and (8.2) are replaced by

A = AP
.

= (M + P )(1 + F) exp[−Ĝ/2] (9.7)

and

A = AQ
.

= (M − Q)(1 + F) exp[−Ĝ/2], (9.8)

respectively. These forms can be integrated as required in (5.2) by successive appli-
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cation of (9.3) with w taken to be w1, w2, R3 and T in turn, in whatever sequence
is found convenient. After removal of the term in k−3 as previously discussed, they
yield accurate coefficients for the lowest-order retained term of the three-dimensional
asymptotic expansion, the approximate nature of their derivation having implications
only for higher-order terms.

In general, F contains a daunting array of individual terms even after averaging
in azimuth. This array reduces to a workable number (in the present incompressible
case) if attention is confined, as soon it will be, to the three-dimensional wavenumber
spectrum. It then involves four further spectral sums – I8 to I11, found in table 1 – and
is given in Appendix D by F̂ .

The product PF in (9.7) is redundant for purposes of the lowest-order retained
term. It – but not QF in (9.8) – may be ignored.

Appendix D presents, in addition to F̂ , partially expanded, azimuthally averaged,
forms for the (M + P )(1 + F̂) of horizontal and vertical displacement, and for the
(M − Q)(1 + F̂) of horizontal and vertical velocity, to the extent required for the k−5

terms of three-dimensional spectra and so to the extent required for the k−3 terms of
one-dimensional spectra. These various forms involve yet further spectral sums – I12

to I17 – found in table 1. They await integration over R space, to be accomplished via
integration over w1, w2 and R3.

10. Integral results: the four-, three- and one-dimensional asymptotic
spectra

Closed-form integrals can be obtained in the manner described, but the process
is tedious to an extreme. The tedium is reduced in the case of input spectra that
are symmetric with respect to upgoing and downgoing waves. For them, five of the
spectral sums vanish, and so too do the cross-product terms in w1T and R3T found
in (9.2). This simplifies the T integrals and leads to Eulerian frequency spectra in the
tail proportional to the Gaussian form exp[−ω2/4θ2]. The factor of proportionality
is itself a function of frequency and wavenumber derived from Hermite polynomials,
and these must be determined individually for individual L variables.

It is possible to reduce (but by no means eliminate) the tedium further, even for
vertically asymmetric spectra, if the frequency spectrum is ignored and interest is
instead limited to the spatial three-dimensional and one-dimensional wavenumber
spectra that are the prime focus here. This may be achieved by the simple expedient
of invoking stationarity in time and setting T = 0; one [2π]−1 factor is removed from
(5.2), and the integration over T is ignored.

The triple integration over w1, w2 and R3 then produces one factor common to all
wave variables and a second factor specific to each of the various combinations of
wx1w

y
2R

z
3 that are found in (D 1)–(D 4). The common factor, which includes also the

[2π]−3 factor left over in (5.2), is given as C in Appendix E. The others, given there
as entries in table 2, are to be multiplied by C and inserted in place of wx1w

y
2R

z
3 in

(D 1)–(D 4). These will then provide the k−5 terms of the respective three-dimensional
spectra.

Observations normally produce one-dimensional spectra. These are to be found
by integrating the three-dimensional spectra over the two unobserved wave-
number components. The integrations can be done accurately only by numerical
methods. Approximate coefficients can be estimated, however, as outlined in the next
section.
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11. Approximate coefficients for one-dimensional vertical-wavenumber
spectra

Vertical-wavenumber spectra are found by multiplying three-dimensional spectra
by 2πkh dkh and integrating over kh from 0 to infinity. The approximation adopted
here is outlined in Appendix F. We apply it here only to the opening term of (D 2),
and even then only for I1 → 0. This yields, as an approximation for the prototypical
s3 asymptotic spectrum,

[s3]tail = (32π)−1/2I
−3/2
1 exp[−1/(2I1)]|k3|−3. (11.1)

The corresponding asymptotic spectrum of vh is found from this by multiplying by
N2 (just as in linear waves, under current approximations). For sh, the multiplier is
I3/I1, and for v3 it is N2 I2/I1.

The coefficient of |k3|−3 attains a maximum under variations of I1 at I1 = 1
3
, where

its value is 0.12. This maximum could be viewed as a ‘saturation’ of ‘the -3 spectral
tail’ that occurs as the intensity of the input spectrum is increased; but unfortunately
the approximation and the original Lagrangian linearization are of questionable
legitimacy at such a large I1. Nevertheless, some tendency to a saturation of this type
as I1 increases toward 1

3
– i.e. as RiL decreases toward 3 – may be expected to occur.

If so, its revelation must await numerical results (now pending).

12. Discussion
The mathematical demand that an Eulerian spectral tail should exist was first

established by Allen & Joseph in 1989, most particularly with respect to the vertical
displacement in a certain canonical spectrum. The form taken by the tail has been
confirmed here, for general quasi-linear Lagrangian input spectra, though the present
coefficients include contributions apparently omitted inadvertently from AJ89 (Ap-
pendix B), with the unacceptable lead term suppressed (Appendix C). The analysis
has also been extended to treat a variety of wave variables, both those in phase
with vertical displacement and those in phase quadrature (but with the omission of
compressibility and Coriolis effects except as discussed in Appendix G).

We have found relations that can yield reasonably accurate four-, three- and one-
dimensional spectra by numerical means, and crude analytic estimates of the one-
dimensional vertical-wavenumber spectral tails for horizontal and vertical components
of displacement and velocity. An important aspect of the one-dimensional behaviour,
revealed by (11.1), is that the coefficient shared by PSD[s3] and N−2PSD[vh] depends
exclusively on a single spectral sum, I1 – alternatively, on the Lagrangian Richardson
number RiL – at the present level of approximation. Corrections to it, whether obtained
analytically or numerically, depend on certain ‘shape factors’ (such as I2I3/I

2
1 ), but

these tend to be close to 1 in model spectra that have been tested (or = 0, in
some cases, with vertical symmetry) and so are unlikely to alter severely the Eulerian
spectral tails from one model input spectrum to another. Universality of saturation
conditions would then depend only on the universality of some defining RiL.

We have seen that (11.1) exhibits saturation at a value RiL = 3, the saturated
value being 0.12 |k3|−3 for s3, and so 0.12 N2|k3|−3 for vh. The coefficient 0.12 may be
compared: with the most commonly cited atmospheric value, namely 0.3 (taken from
vh spectra, e.g. Tsuda et al. 1989, once the two horizontal components of velocity are
combined); with the value 0.4 obtained from representative oceanic s3 spectra (derived
from Gregg 1977, with change of cycle units to radian units); and with the value
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0.15 inferred from oceanic velocity-shear spectra (sloping straight line in figure 3 of
Gargett et al. 1981, with change to radian units). The potential for an explanation of
universality of saturated spectra, at observed intensities, may well be in sight.

The potential for saturation in this fashion, at observed intensities, may not be
confirmed by accurate numerical evaluations (nor perhaps for RiL somewhat larger,
as would be wanted to validate Lagrangian linearization). However, another limiting
process, ignored to this point, must come into play in practice: dissipation, notably
as induced by instability of the wave system. It too is under the control of RiL, and
in turn can control RiL, in a self-limiting fashion.

Observed and model spectra, both in the atmosphere and in the oceans, exhibit
an Eulerian Richardson number RiE of 1 or less, implying instability and associated
dissipation. A substantial portion of the shear that produces this result derives from
the −3 portion of the respective spectra. (Gargett et al. 1981, quoting an argument
of Walter Munk for oceanic systems, conclude that the Eulerian Richardson function
decreases to 1 just as |k3| rises to the point of onset of the −3 portion of the spectrum.
Further reduction, to some effectively destabilizing value of RiE , then depends entirely
on the −3 portion of the spectrum. Hines 1991a finds a similar bias towards the −3
portion for the production of instability in a standard atmospheric spectral model.)
This dependence implies that the −3 portion of the tail must rise to a sufficient
intensity as a prerequisite for significant dissipation. That in turn suggests that RiL
must be reduced to values of 10 or less to become self-limiting, as follows.

When RiL > 15 or so, the Eulerian and Lagrangian spectra would be much
the same over the spectral region observed, and RiE as determined for that region
would approximate to RiL. However, with reduction of RiL from 15, the Eulerian
spectrum contributes significant – and increasingly significant – extra shears from the
tail region: RiE must reduce more rapidly than RiL. As RiE decreases, an increasing
fraction of space–time becomes unstable and dissipation becomes more rapid. Some
value in the range 4 < RiL < 10, perhaps RiL = 7, may be suggested as the value
required to dissipate wave energy at a rate equal to the input rate. We are therefore
led to the concept of a self-limiting, quasi-universal RiL near 7, accompanied by a
quasi-universal RiE that is but a fraction (perhaps a small fraction) of 1.

We postpone further discussion until numerical results, now pending, become
available for presentation.

This study has evolved over a long period, with input from many individuals
along the way. Throughout, discussions with Dr Igor Chunchuzov have proved to be
most valuable. He was conducting a parallel analysis by methods of his own, and
repeated exchanges between us were of great benefit, certainly to me. Others who
have provided useful discussion and often helpful input, while not necessarily agreeing
with the course adopted, are: R. Akmaev, R. N. Bracewell, J. B. Kinney, G. Klaassen,
H. G. Mayr, A. Medvedev, K. Omidvar, R. E. Peltier, L. R. O. Storey and M. P. Sulzer.
L. Childress and J. B. Kinney, working with Dr Sulzer at the Arecibo Observatory,
programmed and conducted the numerical computations referenced. The work was
supported in part by the Laboratory for Atmospheres of NASA’s Goddard Space
Flight Center via Furman University and by the National Science Foundation via the
National Astronomy and Ionosphere Center at Cornell University.
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Appendix A. Conditions for quasilinearity of the Lagrangian spectrum
Throughout this paper, it is assumed that the Lagrangian waves can be represented

by dispersion and polarization relations taken from linear theory. The assumption
follows from a ‘weakly nonlinear’ approximation to the full Lagrangian equations,
although with respect to temporal spectra it must also be assumed that the decor-
relation time scale in such an approximation exceeds the times T required in § 9
(AJ89).

The conditions for validity are derived from the underlying dynamical equations,
and are developed in some detail by Hines (2002). They are based on a requirement
that the linear dispersion and polarization relations that result from the omission of
nonlinear terms would not be seriously altered if representative r.m.s. values for the
nonlinear terms were to be introduced.

The requisite conditions parallel a number of conditions that apply to Eulerian
spectra for linearity. The best known of these is that 〈vj〉|kj | shall be small in
comparison with wave frequency, so that Doppler spreading in a wave of wavevector
k should be of no great importance – the very condition that breaks down in practice
and leads to the present analysis.

An essential prerequisite for Lagrangian quasi-linearity is found to be that the
Lagrangian Richardson number RiL, defined as N2 divided by the variance of vertical
shear of horizontal velocity and given by I−1

1 here, shall be � 1. This is a condition
imposed on any broad spectrum as a whole, quite independently of its application to
one wave or another. (A corresponding condition, RiE � 1, must be met for Eulerian
linearity.)

A number of other conditions obtain, but in practice they can all be subsumed
into the foregoing or into one of two others, both of which are wave-specific. The
first requires that the r.m.s. horizontal gradient of vertical displacement should be
� |αh/α3| for the wave in question, which quantity is given by β/N under the
approximations employed here. (A corresponding condition must be met for Eulerian
linearity.) The second requires that the r.m.s. vertical shear of horizontal displacement
should be � |α3/αh|, or N/β, for the wave in question. (There is no corresponding
Eulerian condition. It is replaced, in the Eulerian formulation, by the Doppler-spread
condition already cited.)

Model spectra adopted for use with the present analysis should consist only of
modes that meet or come close to meeting these two conditions, and the spectrum as
a whole should satisfy or come close to satisfying RiL � 1.

For further discussion of the conditions themselves, see Hines (2002).

Appendix B. The terms missing from AJ89
The forms given by (8.1) and (8.2) lead inevitably to a k−1 term as the lead term

in an asymptotic expansion (at large k) in the one-dimensional Eulerian spectral tail,
when the integrations over R and T are conducted following the procedures of AJ89.
In contrast, AJ89 came to the conclusion that the lead term for one-dimensional
spectra would be of the form k−3. The purpose of this appendix is to identify the
point at which AJ89 missed out the makings of the k−1 term, and to establish the
invalidity of its having done so. The coefficients of higher-order terms are also at
stake.

The point of loss came in the transition from (3.6) to (3.7) of AJ89. This transition
was stated to be an integration by parts, but it ignored the endpoint term that must
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in principle arise in such an integration. Inclusion of this term would have produced
the k−1 term of the one-dimensional spectrum and also altered the k−3 term that was
in fact found. It should have been included, if valid coefficients were to be had, even
though its k−1 term must be eliminated for unrelated reasons (see Appendix C).

To simplify the proof, we introduce an ordering parameter p, to which all Lag-
rangian wave amplitudes are proportional. We concentrate on contributions made by
the lowest-order terms in p as p→ 0, since they exhibit the error and cannot be offset
by terms of higher order. Time variations play no part in the discussion, so they are
omitted from the notation. Moreover, the difference between the incompressibility
condition J = 1 (assumed in the main text here) and the more general J 6= 1
(permitted by AJ89) concerns only higher-order terms in p and so becomes irrelevant
to the discussion.

The Eulerian waveform E[x] was to be obtained from the Lagrangian waveform
L[r] by multiple integrations found in (3.6) of AJ89. The first integration of relevance
here is integration over Lagrangian coordinate rα of εαβγ(L[r])(∂E1/∂rα)(∂E2/∂rβ)
(∂E3/∂rγ), with triple summation over α, β and γ (= 1, 2 and 3), where εαβγ is the
perfectly antisymmetric unit tensor of the third rank and

Eq ≡ exp[−imq{rq + sq(r)}] (B 1)

(with no summation over q). The lead term of this integrand, under the p ordering,
arises from the contribution to the triple sum from the term in which α = 1, β = 2
and γ = 3. It is given by −i3m1m2m3L[r] exp[−im ·r]. Aside from the extraneous factor
m2m3 exp[−im2r2 − im3r3], then, the wanted integral (over some range RL 6 r1 6 RU)
is

im1

∫ RU

RL

dr1 L[r1, r2, r3] exp[−im1r1] = −
∫ r1=RU

r1=RL

d(exp[−im1r1])L[r1, r2, r3]

=

∫ RU

RL

dr1(∂L[r]/∂r1) exp[−im1r1]) + {−L[r1, r2, r3] exp[−im1r1]}RuRL , (B 2)

in which {. . .}RURL denotes the value at RU minus the value at RL, which difference we
denote as W . It is this endpoint term (and corresponding terms of higher order in p)
that AJ89 omitted, for no stated reason.

The boundary conditions imposed by AJ89 were periodic, and it may be supposed
that W was taken to vanish via cancellation of the two terms in it. However, such
a treatment would ignore the fact that a second integration was required, one that
introduced an infinite coefficient. Greater delicacy is required.

The relevant integration, found in (3.6) of AJ89, demands multiplication of W by
dm1 m

−1
1 exp[im1x1] and then integration over m1 through the range from −∞ to +∞,

including of course m1 = 0, where the infinite coefficient arises. This produces, as the
contribution from RU ,

−L[RU, r2, r3]

∫
dm1 m

−1
1 exp[im1(x1 − RU)] = −iπL[RU, r2, r3] sgn[x1 − RU], (B 3)

in which sgn is the signum function: sgn is −1 if its argument is negative and +1
if its argument is positive (and 0 if its argument is 0). There is a corresponding
contribution from the lower endpoint. For x1 < RL, both signum functions are
negative, and subtraction of the RL contribution from the RU contribution produces
the anticipated cancellation once periodic boundary conditions are imposed (such
that L[RU, r2, r3] = L[RL, r2, r3]). Similarly for x1 > RU . In the intermediate range
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RL < x1 < RU , however, the signum functions are of opposite signs and the two
endpoint terms add, rather than cancel. It is this addition of endpoint terms, in place
of the cancellation that usually arises with periodic boundary conditions, that was
overlooked in AJ89.

That the additional term must be included (if one insists on proceeding via inte-
gration by parts) can be seen readily by choosing L = 1 throughout the domain of
integration RL < r1 < RU . The terms retained by AJ89 are all proportional to spatial
derivatives of L, and so would have produced, as the corresponding Eulerian function,
E = 0. Inclusion of the endpoint term leads to the correct Eulerian function, E = 1,
over the domain of interest. (This function could also be produced by the inclusion
of delta-function derivatives at the endpoints, in lieu of the endpoint term.) Both
the present paper and that of Chunchuzov (2002) avoid the issue entirely, simply by
avoiding the integration by parts. In doing so, both yield the k−1 one-dimensional
asymptotic term and alter the coefficients of higher-order terms from the values that
would be obtained by AJ89, absent the endpoint term.

The newly introduced k−1 terms are unacceptable both mathematically and phys-
ically, because of the infinite variances they produce. However, they are properly
removed, not simply by ignoring the endpoint term, but rather by the adoption of
a corrective procedure (see Appendix C). The end result is the same for the k−1

terms – namely, their elimination – but the coefficients of the k−3 terms are dependent
on the procedure actually employed, absent a rigorously correct specification. The
procedure adopted in Appendix C is suggested as being preferable to that implicit in
AJ89, which was produced simply by oversight.

Appendix C. Elimination of infinite Eulerian variances
As noted in § 9, a straightforward application of the AJ89 protocol would produce

in the present analysis infinite Eulerian variances. These are inadmissible as valid
consequences of the analysis, and an explanation for their occurrence should be given
to validate their removal.

For in-phase variables, the inadmissible terms derive solely from the lead term of
M, namely

∑
L2
m/2, a constant. This fact leads us to examine the Lagrange → Euler

transformation of a constant: i.e. we now adopt L = L0, a constant (e.g. unperturbed
temperature). The steps taken in §§ 2–10 for fluctuating quantities may be repeated.
They lead in due course to

A = A0 = M0 exp[−G/2] (C 1)

in place of (8.1) and (8.2), with M0 = L2
0. The Eulerian spectrum of L0 is then

to be obtained, as in (5.2), as a multiple of the three-dimensional spatial integral∫
d3R exp[−G/2 + ik · R]; but we know in advance that this spectrum, being the

spectrum of a constant, must vanish at all k except at k = 0, where it has a
singularity. It follows that:∫

d3R exp[−G/2 + ik · R] = 0. (k 6= 0). (C 2)

This is an integral that was supposed to be evaluated in the main text after approxi-
mating G by Ĝ, in accordance with the AJ89 protocol. With that approximation it
would in fact have produced a k−3 three-dimensional spectrum, a k−1 one-dimensional
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spectrum. The conclusion is inevitable: the approximation is inadequate to the need
in the case of a constant coefficient, whether it be L2

0 as here, or
∑
L2
m/2 as in the

main text.
The nature of the failure of the approximation seems equally clear. Although

exp[−G/2] decreases rapidly from 1 with increase of any Rj when k is chosen to be
large, as argued in AJ89, it nevertheless rises again, to values comparable to 1, here and
there throughout the infinite domain over which the integration of exp[−G/2 + ik ·R]
is to be conducted. It does so at places where a great many individual c{δm} factors
by accident happen to be nearly in phase, just as all are at R = 0. These additional
contributions – and, indeed, the lesser contributions from the remaining portions of
the infinite domain – must act to cancel the contribution obtained near R = 0 in
order to produce the correct result, 0. (Indeed, G itself may require some correction
to produce this result rigorously; its form was established only with the adoption of
approximations.) The AJ89 argument that G may be employed to produce a cutoff
when k is large, and so may itself be approximated by a quadratic form as in (9.1), is
seen to be fallible.

In one sense, the failure is not great; the approximation leads to a spectral
contribution at large k that is very small – small, in that k−1 is small at large k –
but it does not quite provide the correct answer; the contribution is so small that it
is in fact precisely 0. We apply this conclusion to the wave-related M of (6.1), and so
delete the spectral terms that appear to imply infinite variances of in-phase variables.

Phase-quadrature variables suffer from the same problem and must be corrected in
the same way. When the input Lagrangian spectrum is not symmetric with respect to
upgoing and downgoing waves, these variables lead to a further contribution (from
Q) that produces infinite variances. No formal proof of their illegitimacy analogous
to that for M has yet been found, but the illegitimacy itself may be inferred as
before from the infinite Eulerian variances themselves. With the fallability of the
AJ89 protocol already established at order k−1 in one-dimensional spectra, we simply
ignore the terms derived from Q that imply infinite variances. (The search for a formal
proof continues.)

It might be thought that the entire problem arose here because of the present,
somewhat aphysical, assumption of incompressibility. This cannot be the case, as
renewed application of the p ordering of Appendix B would reveal. Nevertheless, the
nonlinear terms contained in J do impose an upper limit on the k values to which
the present analysis can claim validity – a limit that effectively excludes the k−1 term,
see Appendix G.

Appendix D. Azimuth-averaged functions of w1, w2 and R3

Attention is confined here to relations required for the three-dimensional wave-
number spectra alone, obtained by setting T = 0 everywhere and deleting from (5.2)
one [2π]−1 factor and the integration over T . These relations provide factors for
horizontal and vertical components of displacement (sh, sv) and of velocity (vh, vv),
which are representative of in-phase and phase-quadrature fluctuations, respectively.
They require multiplication by exp[−Ĝ/2] and insertion in place of A in the spatial
three-dimensional equivalent of (5.2), for subsequent integration over all R to yield the
lowest-order (i.e. k−5) retained component of the respective Eulerian three-dimensional
tail spectra.

The sh component is obtained by adding the components found for s1 and s2 (these
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being contributions to variance). It is

[sh]−5 = − 1
4
(I1w

2
∗ + 2I3R

2
3) + F̂I17 + k2

3I
2
1w

2
∗R

2
3/4

−k3khI1(3w1w
2
∗R3/16 + I3w1R

3
3/4)

+k2
h(I

2
1w

2
1w

2
∗/2 + I2

1w
4
∗/16 + I1I3[3w

2
1 + w2

2]R2
3/2 + I2

3R
4
3), (D 1)

in which w2∗ ≡ w2
1 +w2

2 and F̂ is as given in (D 5). In use, all terms must be expanded (if
necessary) into the form Kxyzw

x
1w

y
2R

z
3. After the required multiplication and insertion

in the three-dimensional equivalent of (5.2), integration over R yields results given in
Appendix E. Likewise in what now follows.

The vertical displacement, whose spectrum was sought by AJ89, yields

[s3]−5 = − 1
4
(I2w

2
∗ + 2I1R

2
3) + F̂I16 + 1

16
(k3[I2w

2
∗ + 2I1R

2
3]− 2khI1w1R3)

2. (D 2)

The final factor will require its squaring operation to be conducted explicitly and, as
before, expansion into terms of the form Kxyzw

x
1w

y
2R

z
3.

The horizontal velocity vh (obtained as was sh) produces

[vh]−5 = −(N2/4)(I2w
2
∗ + 2I1R

2
3) + k2

3I7(I12w
4
∗/32 + I13w

2
∗R

2
3/8)

−khk3([I6I12 + 3I7I13)w1w
2
∗R3/32 + [3I6I13 + I7I14]w1R

3
3/24)

+k2
hI6(I13[3w

2
1 + w2

2]R2
3/32 + I14R

4
3/24)

+F̂[I4 − 1
4
(k2

3I
2
7w

2
∗ − 2k3khI6I7w1R3 + k2

hI
2
6R

2
3)], (D 3)

and the vertical velocity v3 produces

[v3]−5 = −(I15w
2
∗/4 +N2I2R

2
3/2) + k2

3I7(I12w
2
∗R

2
3/2 + I13R

4
3/3)

−k3khI7(3I12w1w
2
∗R3/8 + 2I13w1R

3
3/3)

+k2
hI7(I12w

2
1w

2
∗/16 + I13w

2
1R

2
3/4)

+F̂[I5 − I2
7 (k2

3R
2
3 − khk3w1R3 + k2

hw
2
1/4)]. (D 4)

It may be noted that, in vertically symmetric spectra (for which I6 = 0 = I7), [vh]−5

and [v3]−5 are greatly reduced in complexity.
In these,

48F̂ ≡ k2
3(3I8w

4
∗/4 + 6I9w

2
∗R

2
3 + 2I10R

4
3)− k3kh(6I9w1w

2
∗R3 + 8I10w1R

3
3)

+k2
h(I9w

2
1w

2
∗/2 + I9w

4
∗/8 + 9I10w

2
1R

2
3/2 + 3I10w

2
2R

2
3/2 + I11R

4
3). (D 5)

(Note the factor 48.) Multiplications must be completed in the case of (D 3) and (D 4),
and all terms require expansion to the form Kxyzw

x
1w

y
2R

z
3.

The foregoing relations are complete, and are intended for purposes of numeri-
cal evaluation of the asymptotic spectra. When one is interested only in the one-
dimensional vertical-wavenumber asymptotic spectra, useful approximations can be
obtained by setting kh = 0 in these relations (but not in an associated exponent, −B),
for reasons explained in Appendix F. This provides considerable simplification and
permits some further analytic advance.

Appendix E. Results of integrations over w1, w2 and R3

Appendix D provides in (D 1)–(D 4) terms that, after multiplication by the common
factor [2π]−3 exp[−Ĝ/2− ikhw1− ik3R3] and integration over R space, will produce the
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x, y, z Associated multiplier of C

2,0,0 1
2
ε̂−2(1− Ĥ2/2)

0,2,0 1
2
ζ−2

1,0,1 1
4
ε̂−2η−2(−k̂hk3 + κ[1− Ĥ2/2])

4,0,0 3
4
ε̂−4(1− Ĥ2 + Ĥ4/12)

0,4,0 3
4
ζ−4

2,2,0 1
4
ε̂−2η−2(1− Ĥ2/2)

2,0,2 1
4
ε̂−2η−2(1− Ĥ2/2)(1− k2

3/2η
2)− 3

8
ε̂−4η−4k̂hk3κ(1− Ĥ2/6)

+ 3
16
ε̂−4η−4κ2(1− Ĥ2 + Ĥ4/12)

3,0,1 3
8
ε̂−4η−2κ(1− Ĥ2 + Ĥ4/12)− 3

8
ε̂−4η−2k̂hk3(1− Ĥ2/6)

1,0,3 3
8
ε−2η̂−4κ(1− Ĵ2 + Ĵ4/12)− 3

8
ε−2η̂−4khk̂3(1− Ĵ2/6)

1,2,1 1
8
ε̂−2ζ−2η−2(−k̂hk3 + κ[1− Ĥ2/2])

6,0,0 15
8
ε̂−6(1− 3Ĥ2/2 + Ĥ4/4− Ĥ6/120)

0,6,0 15
8
ζ−6

4,2,0 3
8
ε̂−4ζ−2(1− Ĥ2 + Ĥ4/12)

4,0,2 3
8
ε̂−4η−2(1− Ĥ2 + Ĥ4/12)(1− k2

3/2η
2)− 15

16
ε̂−6η−4k̂hk3κ(1− Ĥ2/3 + Ĥ4/60)

+ 15
32
ε̂−6η−4κ2(1− 3Ĥ2/2 + Ĥ4/4− Ĥ6/120)

2,4,0 3
8
ε̂−2ζ−4(1− Ĥ2/2)

2,2,2 1
8
ε̂−2ζ−2η−2(1− Ĥ2/2)(1− k2

3/2η
2) + 3

16
ε̂−4ζ−2η−4k̂hk3κ(1− Ĥ2/6)

+ 3
32
ε̂−4ζ−2η−4κ2(1− Ĥ2 + Ĥ4/12)

3,2,1 3
16
ε̂−4ζ−2η−2κ(1− Ĥ2 + Ĥ4/12)− 3

16
ε̂−4ζ−2η−2k̂hk3(1− Ĥ2/6)

3,0,3 9
16
ε̂−4η−4κ(1− Ĥ2 + Ĥ4/12)− 9

16
ε̂−4η−4k̂hk3(1− Ĥ2/6)(1− k2

3/6η
2)

+ 45
64
ε̂−6η−6k̂hk3κ

2(1− Ĥ2/3 + Ĥ4/60)

+ 15
64
ε̂−6η−6κ3(1− 3Ĥ2/2 + Ĥ4/4− Ĥ6/120)

5,0,1 15
16
ε̂−6η−2κ(1− 3Ĥ2/2 + Ĥ4/40− Ĥ6/120)− 15

16
ε̂−6η−2k̂hk3(1− Ĥ2/3 + Ĥ4/60)

Table 2. Multipliers of C obtained upon integration over w1, w2 and R3 of wx1w
y
2R

z
3 for various x, y

and z combinations found in the first column. Missing members (such as 0,0,4) are to be obtained

by interchanging x and z and replacing ε̂ by η̂, ε by η, k̂h by k̂3, k3 by kh and Ĥ by Ĵ in the manner
illustrated by 3,0,1 and 1,0,3.

lead term of the wanted asymptotic expansion for the three-dimensional wavenumber
spectra (in radian units). These terms are all of the form Kxyzw

x
1w

y
2R

z
3, in which Kxyz

is a function of kh, k3 and the spectral sums, while x, y and z take on integral values
ranging from 0 to 6. Integration over w2 is relatively straightforward, because of
the absence of w2 from any cross-product term or imaginary term in the exponent.
Integration over w1 and R3 is preferably done first with respect to the variable of
lower order – for example, with respect to w1 for the w1R

3
3 term – since this requires

fewer terms in the expansion of (v − c/2a2)n in (9.3).

All integrations yield a common factor, given by

C ≡ 2−3π−3/2|ε−1ζ−1η̂
−1| exp[−B] ≡ 2−3π−3/2|ε̂−1ζ−1η−1| exp[−B], (E 1)



310 C. O. Hines

where

ε̂2 ≡ ε2 − k2/4η2, η̂2 ≡ η2 − k2/4ε2, (E 2)

and

B ≡ (ε2k2
3 + κkhk3 + η2k2

h)/(4ε
2η2 − k2). (E 3)

The factor [2π]−3 associated with radian units has been incorporated in C .
Coefficients for terms up to a combined total of sixth order in w1, w2 and R3 are

required. They are listed in table 2 for the required x, y and z combinations. There,

k̂h ≡ kh + κk3/2η
2, k̂3 ≡ k3 + κkh/2ε

2, (E 4)

Ĥ2 ≡ k̂2
h/ε̂

2, Ĵ2 ≡ k̂2
3/η̂

2. (E 5)

These various coefficients may be inserted directly into (D 1)–(D 4) in place of the
various wx1w

y
2R

z
3 found there after all expansions are complete. After this insertion,

and then multiplication by C , (D 1)–(D 4) provide the k−5 terms of the respective
asymptotic expansions of the three-dimensional spectra.

Even now, a daunting task lies ahead before values for the coefficients of these
terms can be determined. In reality, they can be obtained analytically only for special
spectra, and for general spectra only by numerical means. The forms given here are
fully correct for either purpose, requiring only that the choice of input spectra be
made.

Appendix F. Approximate method of integration over kh
The k3 spectra are produced from the three-dimensional spectra by integration

over kh (from 0 to ∞), after multiplication by 2πkh dkh. The approximation to be
employed hinges on the fact that the factor exp[−B] in (E 1) falls rapidly toward 0
as kh increases from 0, providing a cutoff behaviour somewhat similar to that which
permitted evaluation of the asymptotic terms themselves. This is seen from the Taylor
expansion of B (for k2

h/k
2
3 small), whose first two terms are

B̂ ≡ (2I1)
−1 + (4k2

h/I2k
2
3)(1− {I2I3/4I

2
1}/16). (F 1)

The cluster {I2I3/I
2
1} is typically about 1.4, at least in representative atmospheric

spectra, and so the factor multiplying (4k2
h/I2k

2
3) is typically only slightly less than 1.

For simplicity, we take it to be 1. On the other hand, I2 is typically of order I1/100,
while I1 is necessarily � 1 for the presumed Lagrangian linearity to be available. In
consequence, I2 is extremely small, the second term in (F 1) increases rapidly with
|kh/k3| as the integration over kh proceeds, and exp[−B] decreases rapidly toward 0.

These considerations lead to an approximation such that table 2 is evaluated
only at kh = 0. This choice eliminates many terms and simultaneously simplifies the
evaluation of ε, ζ and η. We may now imagine a new table, produced from table 2
by evaluation at kh = 0.

The components (D 1)–(D 4) appropriate to the various wave parameters are to be
multiplied by π exp[−B̂] d(k2

h) and integrated over k2
h from 0 to infinity. The integration

produces a common factor D|k3|−1, with

D ≡ (8π)−1/2I
−1/2
1 exp[−1/(2I1)]. (F 2)

This common factor is to be employed much as C was in Appendix E. Entries
from the imagined table are to be inserted in (D 1)–(D 4) and then multiplied by
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D|k3|−1 to produce the lead term of the one-dimensional asymptotic expansions of
the respective wave variables. (A further factor of k−2

3 is contributed from within the
imagined table.) A factor of 2 has been incorporated into D to effect a combination
of positive and negative k3 into a single-sided |k3| spectrum for comparison with
standard observations.

The cutoff, such as it is, occurs when k2
h increases to values exceeding I2k

2
3/4.

Examination of the entries in table 2 reveals that one term dominates over all others
(the more so, as I1 → 0) when k2

h is much less than this value. There are correction
terms even at kh = 0, but they are not significant unless the omitted terms in kh are
also significant before cutoff occurs. Accordingly, the approximation with kh = 0 is
valid only so long as the contribution made by the dominant term itself remains
dominant.

The dominant term is provided by the R2
3 part of the first term in each of (D 1)–

(D 4), and more particularly by the contribution from the Ĵ2 term in the implied entry
in table 2. It leads to the results given in the opening paragraph of § 11.

Appendix G. Compressibility and Coriolis effects
Both compressibility and Coriolis effects would introduce complications into the

analysis, specifically through modified dispersion and polarization relations. Com-
pressibility also imposes a limitation on applicability.

Compressibility requires the retention of the Jacobian J[s] that appeared in (3.2)
but was subsequently dropped. Its form is

J[s] =
∑∑∑

εαβγ(δ1α + s1,α)(δ2β + s2,β)(δ3γ + s3,γ), (G 1)

in which εαβγ is the perfectly antisymmetric unit tensor of the third rank, δij is the
Kronecker delta, a comma indicates differentiation with respect to the coordinate
index that follows it, and the summations are over α, β and γ = 1, 2 and 3 (Lamb
1945, or see AJ89). This form combines with the factor exp[−iK · (r + s)] of (3.4)
to produce the triple sum described in Appendix B prior to (B 1), written there
with m replacing K . Although the result provided AJ89 with a certain elegance via
the integration by parts mentioned in Appendix B, it led by the same route to the
oversight described there.

Upon expansion, J provides 1 as its lead term and, as its next-order term, the sum
s1,1 + s2,2 + s3,3. This sum is taken to vanish in the linear theory of an incompressible
medium, but it will not vanish even in the linear theory of a compressible medium
nor in the nonlinear theory of an incompressible medium. In general, higher-order
terms of the expansion must also be included.

With the retention of J , the integrand in (5.3) must be extended to include the
product JJ ′ as a multiplier of LL′. The product produces LL′ as its lead term, just
as before, and the evaluation of correlations proceeds as in § 6 with respect to this
term. The next-order term in JJ ′ permits the occurrence of correlations between the
m mode of L, the n mode of L′, and both the p mode of J and the q mode of
J ′ separately, while higher-order terms include the p mode of J and the q mode of
J ′ simultaneously, plus further combinations. These produce further correlations, as
when m = p and n = q, for example, and all these should be included in principle.
All are implicitly included in the analysis of AJ89, but there is no evidence that they
served any effective purpose there.

All of these complications could be included by extension of the analysis given here,
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but there is little motivation toward making the attempt. In particular, if the input
Lagrangian spectrum contains only modes for which αm3 is substantially greater than
the inverse of the scale height of density variation, the sum s1,1 +s2,2 +s3,3 will continue
to approximate to zero, and the first-order additional terms will effectively vanish (as
AJ89 took them to do, by virtue of the polarization relations that were adopted). If
this were not the case, the polarization relations that underlie the expressions given for
I1, I2, and their counterparts would also need amendment. Further, if the higher-order
additional terms were retained, they would be nonlinear in the Lagrangian spectrum
and should in principle be complemented by other nonlinear terms that have been
excluded here from the start.

Yet another complication arises. The transparency of the analysis here – most
notably that of § 6 – has depended on a division of the input spectrum into N̂ modes,
with N̂ → infinity and N̂|Sm|2 held constant. The nonlinear terms of J are such that,

if admitted, they would become infinite with N̂ (for a constant spectral distribution in
α-space) and so would void the analysis entirely. This problem arises as much for the
incompressible as for the compressible case, even though it is hidden in the former.

The main analysis can nevertheless be retained unchanged, if only the terms in J
additional to 1 can be kept sufficiently small. This requires that N̂ be restricted to
some finite value, for which a corresponding maximum reduction of |Sm| occurs. The
expansion of exponential factors given in § 6 is then valid only for a limited range of k,
not for the infinite range previously assumed. It can be shown that, for RiL � 1, this
range extends far enough to provide the onset of the Eulerian spectral tail, but not far
enough to permit the ‘unwanted’ leading term of the spectrum to come to exceed the
‘wanted’ second term, even if the ‘unwanted’ term is not removed via the arguments
of Appendix C. The net result, both for the compressible and for the incompressible
case, is the irrelevance of the ‘unwanted’ term but also an acknowledgment that the
validity of the ‘wanted’ term has not been established to infinite k values. The analysis
of Chunchuzov (2002) provides a more thorough, formal treatment of the limitation
on k imposed by J .

The introduction of compressibility appears to have very little to recommend it
and much arguing against it. The complexities of analysis that are found even in
its absence, and the uncertainties that must attend any attempt to provide a truly
representative spectrum for modelling purposes, suggest that compressibility is best
avoided. This can be done at little cost so far as the applicability of the analysis is
concerned, either in principle or, as in § 12, in application to observations.

Coriolis effects, if included (as by AJ89), would alter the analysis in three ways.
First, they add a component of horizontal displacement transverse to the azimuth of
propagation of each Lagrangian mode in turn, and this new component is in phase
quadrature to the components of displacement that have been included here. The new
component must be included both when the correlations of § 6 are effected and when
the averaging in § 7 is conducted. In the former, it has the effect of introducing a
combination of in-phase behaviour and phase-quadrature behaviour regardless of the
nature of the field variable L. Secondly, Coriolis effects alter the polarization relations
that have been employed in the body of the text, negating the utility of many of the
spectral sums found in table 1 and requiring some revised and additional forms. Fi-
nally, Coriolis effects require that the new components of displacement and of velocity
be taken into account when the Eulerian spectra of sh and vh are being determined.

These changes will alter the coefficients of the asymptotic terms that have been
found here, but not the asymptotic forms themselves. A rough assessment of the
effects suggests that whatever changes may occur will not be large. Then, too, the
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discussion in § 12 reveals that no large changes are needed to produce conformity
with observation.
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